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A B S T R A C T   

With the development of communication technology, microwave dielectric ceramics are in increasingly urgent 
need. Perovskite ceramics, as a kind of microwave dielectric ceramics with large dielectric constant span, have 
broad application prospects. Predicting material properties before experiments can greatly accelerate the 
development of materials. Although the existing methods, including classical theory and density functional 
theory, are of practical use for dielectric constant prediction, unsatisfactory universality and predictability limit 
rational design of microwave dielectric ceramics. This work aims to develop an uncomplicated method to quickly 
predict the dielectric constant of perovskite ceramics. According to the element and content of the compound, the 
dielectric constant can be accurately predicted by our machine learning model. Moreover, the model provides 
prediction results that are consistent with the experiment, but are completely different from those calculated by 
C-M equation.   

1. Introduction 

Microwave dielectric ceramics have been widely used in satellite 
television broadcasts, mobile communication, Bluetooth technology, 
radar, Global Position System (GPS) and other communication systems 
as dielectric resonators, filters, and dielectric substrates, for nearly half a 
century due to their excellent dielectric properties [1]. With the rapid 
development of mobile communication technology, especially in the 
past decade, the large-scale commercial use of 5 G has led to an explo
sive growth in the demand for microwave dielectric ceramics [2]. 
Dielectric constant (εr) is one of the most important properties of mi
crowave dielectric ceramics, which is a physical parameter character
izing the dielectric or polarization property of dielectric materials. 
Different application scenarios have different requirements on dielectric 
properties of microwave dielectric ceramics, especially the dielectric 
constant. For example, ceramics with high dielectric constant can meet 
the demands for high-temperature capacitors [3], while ceramics with 
low dielectric constant are required to improve the signal transmission 
speed when used as dielectric substrates [4]. Therefore, in order to 
achieve different applications in the field of communication, it is 
necessary to develop potential ceramics with different dielectric 
constants. 

Perovskite materials have attracted enormous interest because of 

their excellent properties, which are explained by their special structure 
and composition adjustability, and are widely used in solar cells [5], 
catalysts [6], biosensors [7], optoelectronic devices [8] and many other 
fields. In recent years, many excellent perovskite microwave dielectric 
ceramics have been reported, such as SrTiO3 [9] with high dielectric 
constant(~200); Ba(Zn1/3Ta2/3)O3 [10] with medium dielectric con
stant (~30) and (Mg1− xCox)TiO3 [11] with low dielectric constant 
(~15). Also, perovskite microwave dielectric ceramics are in possession 
of properties such as low loss, adjustable temperature coefficient of 
resonant frequency, and have great development potential in the 
application of microwave components in the future. However, when the 
dielectric properties of perovskite ceramics are adjusted by A-site 
replacement [12], B-site replacement [13], or synergistic modification 
[14], it is difficult to achieve simultaneous adjustment of the dielectric 
constant, quality factor, and resonant frequency temperature coeffi
cient. It usually takes a long time of repeated experiments to find mi
crowave dielectric ceramics with desired properties. 

Compared with the “Edison Style” that mainly relies on the experi
ence based on the experiment, it will greatly save time and resources to 
predict the target performance before conducting experiments. The 
main methods to obtain the dielectric constant of unknown materials 
include experimental measurement, fitting equation and density func
tional theory (DFT) calculation. Experimental measurement is the most 
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fundamental method to obtain the actual dielectric constant of mate
rials, but it is expensive and time-consuming. The classical Clausius 
Mossotti (C-M) equation bridges the gap between polarizability and 
dielectric constant [15], but for some materials, the calculation errors 
are so large that the calculated dielectric constant values are sometimes 
unacceptable for guiding the estimation of dielectric constant and the 
discovery of new dielectric materials. And other models for calculating 
dielectric constant, such as Penn model [16,17] and Gladstone Dale 
(G-D) model [18], are limited by their assumptions. DFT is one of the 
most commonly used calculation methods, and has been used to obtain 
the dielectric constant of SnZr0.5Ti0.5O3 [19] and other materials. 
However, the most obvious disadvantages are that the high cost of DFT 
calculation and the inability to calculate complex systems. 

In recent years, data-driven machine learning methods have been 
used in physics, materials, chemistry and other fields, and are consid
ered as a powerful tool to predict material properties. For example, Yuan 
et al [20]. utilized machine learning to find ferroelectrics with excellent 
electrothermal effect; He et al [21]. used machine learning strategies to 
effectively sample ceramic powders with good piezoelectric catalytic 
properties; Qin et al [22]. established a high-precision prediction model 
for the dielectric constant of single-phase microwave dielectric ceramics 
through machine learning. Many literatures have reported the dielectric 
constant prediction based on machine learning [23,24], mostly focusing 
on polymers [25,26] or based on DFT calculation data [27,28]. This 
greatly accelerates the development process of dielectric materials. 
However, it is a little pity that the dielectric constant of perovskite mi
crowave dielectric ceramics cannot be predicted directly by 
composition. 

In this work, we predicted the dielectric constant of perovskite mi
crowave dielectric ceramics via machine learning method. A dataset of 
dielectric constant of perovskite ceramics was established, features 
potentially related to performance were constructed and screened, and 
machine learning models were trained and optimized. In addition, the 
performance of machine learning model was compared with that of 
classical C-M equation in some ceramics. 

2. Methods 

2.1. Dataset preparing 

The data used in this work were collected from the literature called 
Dielectric Materials for Wireless Communication [29] published by Dr. 
Sebastian in 2008. Dr. Sebastian described the state of microwave 
dielectric materials with a truly comprehensive list of over a thousand 
references at that time. We extracted 344 pieces of data of perovskite 
ceramics containing composition and dielectric constant, and the data of 
materials doped with glass or other impurities were not selected. 
Considering that the dielectric constant of some compounds is extremely 
high, the highest reaches 838, and most of the dielectric constants are 
relatively concentrated that the data with the dielectric constant 
exceeding 130 only account for 5%. To avoid problems caused by data 
imbalance, 19 data with the dielectric constant over 130 were elimi
nated, and 325 groups of data were finally retained in the dataset, with 
the dielectric constant ranging from 10 to 130. 

2.2. Feature generation 

Feature construction is the basis of machine learning process, and the 
quality of feature selection directly affects the results of machine 
learning. Therefore, it is necessary to select features that are potentially 
related to the dielectric constant. In the reported literature [22], 
chemical, structural and thermodynamic characteristics that may be 
related to dielectric constant were selected, but most of these charac
teristics need to be obtained from the Material Project database. When 
predicting a new material that is not included in the Material Project 
database, its dielectric constant cannot be estimated due to the absence 

of these characteristic data. Therefore, we chose the general properties 
of perovskite ceramics that can be calculated directly from the compo
sition. These properties reflect the element and structure information of 
perovskite ceramics, which may be related to the dielectric constant. In 
addition, they are conveniently to obtain and contain some physical 
information, which has been adopted in previous studies [20,30,31]. 
The original 25 features extracted from the literature are shown in  
Table 1. 

2.3. Machine learning algorithm 

According to the size of our dataset, 9 commonly-used machine 
learning algorithms were selected, including linear regression (LR), 
support vector regression with linear kernel (SVR.l), support vector 
regression with polynomial lernel (SVR.p), support vector regression 
with radial basis function kernel (SVR.r), decision tree (DT), random 
forest (RF), AdaBoost (AdaB), Extreme Gradient Boosting (XGB) and 
gradient boosting decision tree (GBDT). Support vector regression is 
traditional strong algorithm, and RF, AdaB, XGB and GBDT are ensemble 
learning algorithms. For all modeling procedures, the Python pro
gramming language and Visual Studio Code software was used. The 
models were mainly established with scikit-learn library. 

2.4. Model training and verification 

The hyperparameters of the models were optimized using grid search 
method with the 10-fold cross validation and root mean square error 
(RMSE) as the scoring metric. 

In order to obtain the optimal model, 127 feature combinations were 
generated exhaustedly to train the optimized algorithm. After the 
models and features were optimized, the training set and testing set were 
divided according to 10-fold cross validation, and the results of the 
testing set were predicted respectively to obtain the predictive values of 
all samples. When forecasting validation data, all samples were sent into 
the training model. 

Table 1 
Original selected features used in this work.  

Feature Description 

ama Relative atomic mass of A-site element[32] 
amb Relative atomic mass of B-site element[32] 
ara Atomic radius of A-site element[33] 
arb Atomic radius of B-site element[33] 
bva Ideal A-O bond distance[34] 
bvb Ideal B-O bond distance[34] 
cra Crystallographic van der Waals radii of A-site element[35] 
crb Crystallographic van der Waals radii of B-site element[35] 
eaa A-site electronegativity–absolute[36] 
eab B-site electronegativity–absolute[36] 
ema A-site electronegativity–Matyonov-Batsanov[37] 
emb B-site electronegativity–Matyonov-Batsanov[37] 
epa A-site electronegativity–Pauling[38] 
epb B-site electronegativity–Pauling[38] 
era Equilibrium van der Waals radii of A-site element[35] 
erb Equilibrium van der Waals radii of B-site element[35] 
iea Ionization energies of A-site element[39] 
ieb Ionization energies of B-site element[39] 
pa Polarizability of A-site element[40] 
pb Polarizability of B-site element[40] 
ra Ionic radii of A-site (12-coordination)[41] 
rb Ionic radii of B-site (6-coordination)[41] 
t Tolerance factor calculated by ionic radii 
vea A-site valence electron number 
veb B-site valence electron number  
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3. Results and discussions 

3.1. Feature filter 

For small size datasets, the features with high dimension will lead to 
high model complexity and poor generalization ability. Therefore, 
feature engineering should be used to filter features before training 
models. Here, three feature filtering methods were used, including 
feature filtering based on variance, feature elimination based on Pearson 
correlation coefficient, and feature selection based on feature impor
tance ranking of tree models. 

Variance is the average of the squares of the deviations between the 
values of various variables and their mean values. It is the most 
important method to measure the dispersion of numerical data. If the 
variance of a feature is very small, it means that the samples have almost 
no differences in this feature. Maybe most values of the feature are the 
same, indicating that this feature has no effect on sample differentiation. 
Therefore, we filtered features through variance and eliminated several 
features with small variance. In order to ensure the comparability be
tween different features, each feature was normalized to an interval of 
0–1 before calculating variance. The normalized variances of original 
features are shown in Fig. 1. The screening threshold was manually set to 
0.03, and finally 18 first-generation features with variance greater than 
0.03 were retained from 25 original features. 

Pearson correlation coefficient can determine whether each feature 
is closely related. If two features are closely related, they belong to 
duplicate features, and only one needs to be retained. We hope that each 
feature in the input machine learning model is unique, so as to best 
represent information. Fig. 2. displayed the calculated Pearson corre
lation coefficient between pairs of 18 first-generation features. When 
Pearson correlation coefficient is greater than 0.8, it is generally 
believed that the two features are highly correlated. Among these fea
tures, emb, ieb, ara, and veb were not highly related to other features, so 
they were all retained. Then, according to the changes of RMSE after 
adding input features in turn, the reserved features epa and ama were 
selected from the two groups of highly correlation features. The 
remaining features had more complex interactions, which were filtered 
according to the model error and prior knowledge in material field. At 
the end of this step, 9 features were selected as the second-generation 
features, including emb, ieb, ara, veb, ama, epa, ra, eab, and arb. 
These features were arranged according to the order of screening. 

Since not all features are equally important, omitting unimportant 
features will help further reduce the complexity of the model. We used 
the feature importance score based on tree model in machine learning to 
rank the second-generation features. Specifically, the comprehensive 
scores of feature importance were calculated by AdaB, GBDT, RF and 

XGB methods, and the results are provided in Fig. 3. The scores of the 
four tree models were comprehensively considered because they were 
obtained by different calculation methods. Importances were calculated 
by the Gini index and the weight in Adab, the value of the feature’s 
importance in each single tree in GBDT, the number of splits in each tree 
in XGB, and the degree of decline in the accuracy of out of pocket data in 
RF, respectively. These highly ranked features mainly include atomic 
radius and electronegativity, reflecting structural and physicochemical 
information. Finally, the seven most important features were retained. 

3.2. Model performance 

After the above data preprocessing and feature screening process, 
325 groups of data containing one target performance and seven fea
tures were used for model training. This means that it is a small sample 
learning task, so it is necessary to select appropriate algorithms and tune 
the model. 

SVR is generally recognized as a machine learning algorithm for 
small samples. Here we tried three kernel functions: linear kernel, 
polynomial kernel and radial basis function kernel. The RSME of the 
three models trained are 19.6, 13.5 and 10.3 respectively, as illustrated 
in Fig. 4. The super parameters C and gamma of SVR.r obtained by grid 
search are 100 and 10, respectively. Ensemble learning algorithm is to 
complete the learning task by constructing and combining multiple 
machine learners, which usually has a high accuracy in machine 
learning algorithms. Bagging based RF algorithm and boosting based 
AdaB, GBDT and XGB algorithms were used in this work. The super 

Fig. 1. Normalized variances of 25 original selected features.  

Fig. 2. Pearson correlation coefficient of 18 first-generation features.  

Fig. 3. Ranking list of 9 second-generation features by comprehensive score of 
importance calculated by AdaB, GBDT, RF and XGB methods. 
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parameters of each ensemble algorithm, including the n_estimators and 
learning_rate, were optimized through grid search method. All the base 
estimators were DT, so the RMSE of DT was also put in Fig. 4. as a 
comparison. The RMSE of these 4 integrated learning models are lower 
than the base estimator DT and the SVR models, especially the error of 
Adab is as low as 9.1. The base learner of Adab is a decision tree with a 
maximum depth of 13, and the number of base learners is 100. It illus
trates that ensemble learning is indeed a feasible method to improve the 
accuracy of the model. In addition, the error of linear regression (LR) 
model is also shown, indicating that the precisions of most machine 
learning models we used are higher than that of LR. 

Although AdaB has the lowest RMSE, there is no significant differ
ence between 9.1 and 10.3 for dielectric constant of microwave 
dielectric ceramics. Moreover, generally speaking, the generalization 
ability of the SVR model is better than the ensemble learning model 
when there are only hundreds of data. Therefore, SVR.r is considered to 
be the optimal machine learning algorithm. To further reduce the 
complexity of the model and improve the generalization ability of the 
model, all possible combinations of the seven most important features 
identified above were examined to find the subset with the lowest error 
for SVR.r. For each feature subset, the dataset was divided into 10 parts, 
and the prediction error in Fig. 5 were the average of 10 times training 
and prediction. Fig. 5 reflects that with the increase of the number of 
features, the model error initially decreases first and then increases, 
indicating the improvement of the model. Using more features will make 
the model more complex and may learn less important features. 
Considering "Occam shaver" principle, we used five features, including 
arb, eab, epa, emb and ieb, to ensure that the model had the highest 

accuracy and sufficient generalization ability. 
We chose SVR.r algorithm and five features including arb, eab, epa, 

emb and ieb to train the prediction model for the dielectric constant of 
perovskite-type microwave dielectric ceramics. The prediction ability of 
the proposed model is shown in Fig. 6. Scattering points are distributed 
diagonally, which indicates that the model has a strong ability to capture 
information related to dielectric constant. The correlation between the 
real value and the predicted value reached 0.8837. In the field of ma
chine learning, researchers always pursue the highest accuracy. How
ever, in the field of materials, considering that the data in materials have 
different characteristics from those in other fields, we think that it may 
not be the most desirable result to blindly pursue the improvement of 
accuracy. When the accuracy of prediction reaches a certain level, how 
to guide the material design is a problem we want to solve more. We 
believe that the accuracy of the model has initially met the requirements 
of application. It is worth noting that for data with dielectric constant 
less than 60, the scatter points are concentrated near the diagonal, while 
for data with high dielectric constant, the scatter points are relatively 
more dispersed. This is the impact of the data quality of the dataset. Even 
though we eliminated the component points with dielectric constant 
greater than 130 in order to improve the data imbalance, the data in this 
data set is still unbalanced. Therefore, the model has better learning and 
higher accuracy for data with lower dielectric constant. However, in 
practical applications, the dielectric constant values of dielectric ce
ramics for most key electronic components (such as dielectric resonators 
in cavity filters in base stations, dielectrically loaded antenna cores, etc 
[42].) operating in the GHz frequency range are concentrated in the 
range of 20–60. Hence, this model can be used to guide the design of 
perovskite dielectric ceramics with lower dielectric constant. In addi
tion, the above results reminds us that if the data quality is improved, 
the performance of the model can be further improved. 

3.3. Model validation 

In order to further verify the reliability of our model, we selected a 
new group of perovskite ceramics not in the data set for prediction. The 
dielectric constants of (1 − x)CaTiO3–xLa(Mg2/3Nb1/3)O3 (x = 0.1–0.9) 
ceramics sintered at their densification temperature and their dielectric 
constants calculated by C-M equation were given in Fig. 5 of the recently 
reported literature [43]. The measured values and calculated values 
were extracted and drawn with the values predicted by our model, as 
shown in Fig. 7. Interestingly, the trend of dielectric constants calculated 
by the classical C-M equation is completely opposite to the measured 
values, while the predicted values of our model are highly consistent 
with the experimental. Our model was learned from the five features of 

Fig. 4. RMSE of nine machine learning models compared using 10-fold 
cross-validation. 

Fig. 5. The predicted error of each subset of features. The red points represent 
the best models with given feature numbers. 

Fig. 6. The dielectric constant prediction via SVR.r algorithm with optimized 
five features. 
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arb, eab, epa, emb and ieb while the classical C-M equation mainly 
considered polarization. There may be some new knowledge. For 
example, from the perspective of our model, electronegativity is likely to 
be the key characteristic affecting the dielectric constant, which has also 
been mentioned in previous literature [44,45]. It is a little pity that we 
cannot give the exact relationship between electronegativity and 
dielectric constant due to the limitation of existing dataset. Obviously, 
the existing results show that in some material systems, our model 
provides more accurate prediction results than the C-M equation, and we 
are confident that it will be more widely used in the future. 

4. Conclusion and prospects 

In summary, we realized the dielectric constant prediction of 
perovskite microwave dielectric ceramics via machine learning method. 
The composition and dielectric constant data of 325 perovskite micro
wave dielectric ceramics were collected, and 25 potential features were 
constructed based on the composition information. Based on features 
and target performance, 9 machine learning models were constructed. 
The best model was used to predict the dielectric constant of materials 
whose experimental data were inconsistent with the calculated data of 
C-M equation reported recently. The results verify the reliability of 
predicting dielectric constant of perovskite microwave dielectric ce
ramics by our model. We expect that this method can give more accurate 
dielectric constant prediction results under the condition of greater data 
volume and higher data quality brought by the combination of experi
mental data and computational data in the future, and it is hopeful to 
find the dielectric constant prediction equation of perovskite microwave 
dielectric ceramics different from the classical equation. Besides, the 
rapid prediction of dielectric constant, quality factor and resonant fre
quency temperature coefficient at the same time will greatly accelerate 
the development efficiency of microwave dielectric ceramics. The pre
diction of quality factor and temperature coefficient will be will be 
presented in the next publication. 
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